Skip to content

DGL

DGLLife pretrained models

DGLModel

Bases: PretrainedStoreModel

Load one of the pretrained DGL models for molecular embedding:

Source code in molfeat/trans/pretrained/dgl_pretrained.py
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
class DGLModel(PretrainedStoreModel):
    r"""
    Load one of the pretrained DGL models for molecular embedding:
    """

    AVAILABLE_MODELS = [
        "gin_supervised_contextpred",
        "gin_supervised_infomax",
        "gin_supervised_edgepred",
        "gin_supervised_masking",
        "jtvae_zinc_no_kl",
    ]

    def __init__(
        self,
        name: str,
        cache_path: Optional[os.PathLike] = None,
        store: Optional[ModelStore] = None,
    ):
        super().__init__(name, cache_path=cache_path, store=store)
        self._model = None

    @classmethod
    def available_models(cls, query: Optional[str] = None):
        """List available models
        Args:
            query (str, optional): Query to filter the list of available models. Defaults to None.
        """
        if query is None:
            return cls.AVAILABLE_MODELS
        else:
            return [x for x in cls.AVAILABLE_MODELS if re.search(query, x, re.IGNORECASE)]

    @classmethod
    def from_pretrained(cls, model_name: str):
        """Load pretrained model using the dgllife API and not the store"""
        if not requires.check("dgllife"):
            raise ValueError("dgllife is not installed")
        import dgllife

        base_model = dgllife.model.load_pretrained(model_name)
        model = DGLModel(name=model_name)
        model.eval()
        model._model = base_model
        return model

    def load(self):
        """Load GIN model"""
        if self._model is not None:
            return self._model
        download_output_dir = self._artifact_load(
            name=self.name, download_path=self.cache_path, store=self.store
        )
        model_path = dm.fs.join(download_output_dir, self.store.MODEL_PATH_NAME)
        with fsspec.open(model_path, "rb") as f:
            model = joblib.load(f)
        model.eval()
        return model

available_models(query=None) classmethod

List available models Args: query (str, optional): Query to filter the list of available models. Defaults to None.

Source code in molfeat/trans/pretrained/dgl_pretrained.py
58
59
60
61
62
63
64
65
66
67
@classmethod
def available_models(cls, query: Optional[str] = None):
    """List available models
    Args:
        query (str, optional): Query to filter the list of available models. Defaults to None.
    """
    if query is None:
        return cls.AVAILABLE_MODELS
    else:
        return [x for x in cls.AVAILABLE_MODELS if re.search(query, x, re.IGNORECASE)]

from_pretrained(model_name) classmethod

Load pretrained model using the dgllife API and not the store

Source code in molfeat/trans/pretrained/dgl_pretrained.py
69
70
71
72
73
74
75
76
77
78
79
80
@classmethod
def from_pretrained(cls, model_name: str):
    """Load pretrained model using the dgllife API and not the store"""
    if not requires.check("dgllife"):
        raise ValueError("dgllife is not installed")
    import dgllife

    base_model = dgllife.model.load_pretrained(model_name)
    model = DGLModel(name=model_name)
    model.eval()
    model._model = base_model
    return model

load()

Load GIN model

Source code in molfeat/trans/pretrained/dgl_pretrained.py
82
83
84
85
86
87
88
89
90
91
92
93
def load(self):
    """Load GIN model"""
    if self._model is not None:
        return self._model
    download_output_dir = self._artifact_load(
        name=self.name, download_path=self.cache_path, store=self.store
    )
    model_path = dm.fs.join(download_output_dir, self.store.MODEL_PATH_NAME)
    with fsspec.open(model_path, "rb") as f:
        model = joblib.load(f)
    model.eval()
    return model

PretrainedDGLTransformer

Bases: PretrainedMolTransformer

DGL Pretrained transformer

Attributes:

Name Type Description
featurizer DGLModel

DGL featurizer object

dtype type

Data type.

pooling str

Pooling method for GIN's embedding layer (Default: mean)

batch_size int

Batch size to consider for model

Source code in molfeat/trans/pretrained/dgl_pretrained.py
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
class PretrainedDGLTransformer(PretrainedMolTransformer):
    r"""
    DGL Pretrained transformer

    Attributes:
        featurizer (DGLModel): DGL featurizer object
        dtype (type, optional): Data type.
        pooling (str, optional): Pooling method for GIN's embedding layer (Default: mean)
        batch_size (int, optional): Batch size to consider for model
    """

    def __init__(
        self,
        kind: Union[str, DGLModel] = "gin_supervised_contextpred",
        dtype: Callable = np.float32,
        pooling: str = "mean",
        batch_size: int = 32,
        preload: bool = False,
        **params,
    ):
        """DGL pretrained featurizer

        Args:
            kind (str, optional): name of the pretrained gin. Defaults to "gin_supervised_contextpred".
            dtype: datatype. Defaults to np.float32.
            pooling: global pooling to perform. Defaults to "mean".
            batch_size: batch size for featurizing the molecules. Defaults to 32.
            preload: whether to preload the internal pretrained featurizer or not

        """
        if not requires.check("dgllife"):
            raise ValueError("Cannot find dgl|dgllife. It's required for this featurizer !")
        super().__init__(
            dtype=dtype,
            pooling=pooling,
            batch_size=batch_size,
            preload=preload,
            kind=kind,
            **params,
        )
        self.pooling = pooling
        self.preload = preload
        self._pooling_obj = self.get_pooling(pooling)
        if isinstance(kind, DGLModel):
            self.kind = kind.name
            self.featurizer = kind
        else:
            self.kind = kind
            self.featurizer = DGLModel(name=self.kind)
        self.batch_size = int(batch_size)
        if self.preload:
            self._preload()

    def __repr__(self):
        return "{}(kind={}, pooling={}, dtype={})".format(
            self.__class__.__name__,
            _parse_to_evaluable_str(self.kind),
            _parse_to_evaluable_str(self.pooling),
            _parse_to_evaluable_str(self.dtype),
        )

    def _update_params(self):
        super()._update_params()
        self._pooling_obj = self.get_pooling(self.pooling)
        featurizer = DGLModel(name=self.kind)
        self.featurizer = featurizer.load()

    @staticmethod
    def get_pooling(pooling: str):
        """Get pooling method from name

        Args:
            pooling: name of the pooling method
        """
        pooling = pooling.lower()
        if pooling in ["mean", "avg", "average"]:
            return AvgPooling()
        elif pooling == "sum":
            return SumPooling()
        elif pooling == "max":
            return MaxPooling()
        else:
            raise ValueError(f"Pooling: {pooling} not supported !")

    def _embed_gin(self, dataset):
        """Embed molecules using GIN"""
        data_loader = DataLoader(
            dataset,
            batch_size=self.batch_size,
            collate_fn=dgl.batch,
            shuffle=False,
            drop_last=False,
        )

        mol_emb = []
        for batch_id, bg in enumerate(data_loader):
            if self.verbose:
                logger.debug("Processing batch {:d}/{:d}".format(batch_id + 1, len(data_loader)))
            nfeats = [
                bg.ndata.pop("atomic_number").to(torch.device("cpu")),
                bg.ndata.pop("chirality_type").to(torch.device("cpu")),
            ]
            efeats = [
                bg.edata.pop("bond_type").to(torch.device("cpu")),
                bg.edata.pop("bond_direction_type").to(torch.device("cpu")),
            ]
            with torch.no_grad():
                node_repr = self.featurizer(bg, nfeats, efeats)
            mol_emb.append(self._pooling_obj(bg, node_repr))
        mol_emb = torch.cat(mol_emb, dim=0).detach().cpu().numpy()
        return mol_emb

    def _embed_jtvae(self, dataset):
        """Embed molecules using JTVAE"""
        dataloader = DataLoader(dataset, batch_size=1, collate_fn=JTVAECollator(training=False))

        mol_emb = []
        for tree, tree_graph, mol_graph in dataloader:
            _, tree_vec, mol_vec = self.featurizer.encode(tree_graph, mol_graph)
            enc = torch.cat([tree_vec, mol_vec], dim=1).detach()
            mol_emb.append(enc)
        mol_emb = torch.cat(mol_emb, dim=0).cpu().numpy()
        return mol_emb

    def _embed(self, smiles: List[str], **kwargs):
        """Embed molecules into a latent space"""
        self._preload()
        dataset, successes = self.graph_featurizer(smiles, kind=self.kind)
        if self.kind in DGLModel.available_models(query="^jtvae"):
            mol_emb = self._embed_jtvae(dataset)
        else:
            mol_emb = self._embed_gin(dataset)

        mol_emb = list(mol_emb)
        out = []
        k = 0
        for success in successes:
            if success:
                out.append(mol_emb[k])
                k += 1
            else:
                out.append(None)
        return out

    @staticmethod
    def graph_featurizer(smiles: List[str], kind: Optional[str] = None):
        """
        Construct graphs from SMILES and featurize them

        Args:
            smiles: SMILES of molecules for embedding computation

        Returns:
            dataset: List of graphs constructed and featurized
            list of bool: Indicators for whether the SMILES string can be parsed by RDKit
        """
        if kind in DGLModel.available_models(query="^jtvae"):
            vocab = JTVAEVocab()

            tmp_file = tempfile.NamedTemporaryFile(delete=False)
            with fsspec.open(tmp_file.name, "w") as f:
                f.write("\n".join(smiles))
            dataset = JTVAEDataset(tmp_file.name, vocab, training=False)
            os.unlink(tmp_file.name)
            # JTVAE does not support failure
            success = [True] * len(smiles)
            if len(dataset) != len(smiles):
                raise ValueError("JTVAE failed to featurize some molecules !")
            return dataset, success

        else:
            graphs = []
            success = []
            for smi in smiles:
                try:
                    mol = dm.to_mol(smi)
                    if mol is None:
                        success.append(False)
                        continue
                    g = mol_to_bigraph(
                        mol,
                        add_self_loop=True,
                        node_featurizer=PretrainAtomFeaturizer(),
                        edge_featurizer=PretrainBondFeaturizer(),
                        canonical_atom_order=False,
                    )
                    graphs.append(g)
                    success.append(True)
                except Exception as e:
                    logger.error(e)
                    success.append(False)
            return graphs, success

__init__(kind='gin_supervised_contextpred', dtype=np.float32, pooling='mean', batch_size=32, preload=False, **params)

DGL pretrained featurizer

Parameters:

Name Type Description Default
kind str

name of the pretrained gin. Defaults to "gin_supervised_contextpred".

'gin_supervised_contextpred'
dtype Callable

datatype. Defaults to np.float32.

float32
pooling str

global pooling to perform. Defaults to "mean".

'mean'
batch_size int

batch size for featurizing the molecules. Defaults to 32.

32
preload bool

whether to preload the internal pretrained featurizer or not

False
Source code in molfeat/trans/pretrained/dgl_pretrained.py
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
def __init__(
    self,
    kind: Union[str, DGLModel] = "gin_supervised_contextpred",
    dtype: Callable = np.float32,
    pooling: str = "mean",
    batch_size: int = 32,
    preload: bool = False,
    **params,
):
    """DGL pretrained featurizer

    Args:
        kind (str, optional): name of the pretrained gin. Defaults to "gin_supervised_contextpred".
        dtype: datatype. Defaults to np.float32.
        pooling: global pooling to perform. Defaults to "mean".
        batch_size: batch size for featurizing the molecules. Defaults to 32.
        preload: whether to preload the internal pretrained featurizer or not

    """
    if not requires.check("dgllife"):
        raise ValueError("Cannot find dgl|dgllife. It's required for this featurizer !")
    super().__init__(
        dtype=dtype,
        pooling=pooling,
        batch_size=batch_size,
        preload=preload,
        kind=kind,
        **params,
    )
    self.pooling = pooling
    self.preload = preload
    self._pooling_obj = self.get_pooling(pooling)
    if isinstance(kind, DGLModel):
        self.kind = kind.name
        self.featurizer = kind
    else:
        self.kind = kind
        self.featurizer = DGLModel(name=self.kind)
    self.batch_size = int(batch_size)
    if self.preload:
        self._preload()

get_pooling(pooling) staticmethod

Get pooling method from name

Parameters:

Name Type Description Default
pooling str

name of the pooling method

required
Source code in molfeat/trans/pretrained/dgl_pretrained.py
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
@staticmethod
def get_pooling(pooling: str):
    """Get pooling method from name

    Args:
        pooling: name of the pooling method
    """
    pooling = pooling.lower()
    if pooling in ["mean", "avg", "average"]:
        return AvgPooling()
    elif pooling == "sum":
        return SumPooling()
    elif pooling == "max":
        return MaxPooling()
    else:
        raise ValueError(f"Pooling: {pooling} not supported !")

graph_featurizer(smiles, kind=None) staticmethod

Construct graphs from SMILES and featurize them

Parameters:

Name Type Description Default
smiles List[str]

SMILES of molecules for embedding computation

required

Returns:

Name Type Description
dataset

List of graphs constructed and featurized

list of bool: Indicators for whether the SMILES string can be parsed by RDKit

Source code in molfeat/trans/pretrained/dgl_pretrained.py
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
@staticmethod
def graph_featurizer(smiles: List[str], kind: Optional[str] = None):
    """
    Construct graphs from SMILES and featurize them

    Args:
        smiles: SMILES of molecules for embedding computation

    Returns:
        dataset: List of graphs constructed and featurized
        list of bool: Indicators for whether the SMILES string can be parsed by RDKit
    """
    if kind in DGLModel.available_models(query="^jtvae"):
        vocab = JTVAEVocab()

        tmp_file = tempfile.NamedTemporaryFile(delete=False)
        with fsspec.open(tmp_file.name, "w") as f:
            f.write("\n".join(smiles))
        dataset = JTVAEDataset(tmp_file.name, vocab, training=False)
        os.unlink(tmp_file.name)
        # JTVAE does not support failure
        success = [True] * len(smiles)
        if len(dataset) != len(smiles):
            raise ValueError("JTVAE failed to featurize some molecules !")
        return dataset, success

    else:
        graphs = []
        success = []
        for smi in smiles:
            try:
                mol = dm.to_mol(smi)
                if mol is None:
                    success.append(False)
                    continue
                g = mol_to_bigraph(
                    mol,
                    add_self_loop=True,
                    node_featurizer=PretrainAtomFeaturizer(),
                    edge_featurizer=PretrainBondFeaturizer(),
                    canonical_atom_order=False,
                )
                graphs.append(g)
                success.append(True)
            except Exception as e:
                logger.error(e)
                success.append(False)
        return graphs, success