HuggingFace
Transformer pretrained models¶
HuggingFace Transformers¶
HFExperiment
dataclass
¶
Source code in molfeat/trans/pretrained/hf_transformers.py
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 |
|
load(path, model_class=None, device='cpu')
classmethod
¶
Load a model from the given path Args: path: Path to the model to load model_class: optional model class to provide if the model should be loaded with a specific class device: the device to load the model on ("cpu" or "cuda")
Source code in molfeat/trans/pretrained/hf_transformers.py
66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 |
|
save(model, path, clean_up=False)
classmethod
¶
Save a hugging face model to a specific path
Parameters:
Name | Type | Description | Default |
---|---|---|---|
model |
HFExperiment
|
model to save |
required |
path |
str
|
path to the folder root where to save the model |
required |
clean_up |
bool
|
whether to clean up the local path after saving |
False
|
Source code in molfeat/trans/pretrained/hf_transformers.py
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 |
|
HFModel
¶
Bases: PretrainedStoreModel
Transformer model loading model loading
Source code in molfeat/trans/pretrained/hf_transformers.py
94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 |
|
__init__(name, cache_path=None, store=None)
¶
Model loader initializer
Parameters:
Name | Type | Description | Default |
---|---|---|---|
name |
str
|
Name of the model for ada. |
required |
cache_path |
PathLike
|
Local cache path for faster loading. This is the cache_path parameter for ADA loading ! |
None
|
Source code in molfeat/trans/pretrained/hf_transformers.py
97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 |
|
from_pretrained(model, tokenizer, model_class=None, model_name=None)
classmethod
¶
Load model using huggingface pretrained model loader hook
Parameters:
Name | Type | Description | Default |
---|---|---|---|
model |
Union[str, PreTrainedModel]
|
Model to load. Can also be the name on the hub or the path to the model |
required |
tokenizer |
Union[str, PreTrainedTokenizer, PreTrainedTokenizerFast]
|
Tokenizer to load. Can also be the name on the hub or the path to the tokenizer |
required |
model_class |
optional model class to provide if the model should be loaded with a specific class |
None
|
|
model_name |
Optional[str]
|
optional model name to give to this model. |
None
|
Source code in molfeat/trans/pretrained/hf_transformers.py
131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 |
|
get_notation(default_notation=None)
¶
Get the notation of the model
Source code in molfeat/trans/pretrained/hf_transformers.py
195 196 197 198 199 200 201 202 203 |
|
load()
¶
Load Transformer Pretrained featurizer model
Source code in molfeat/trans/pretrained/hf_transformers.py
205 206 207 208 209 210 211 212 213 214 |
|
register_pretrained(model, tokenizer, model_card, model_class=None)
classmethod
¶
Register a pretrained huggingface model to the model store Args: model: Model to load. Can also be the name on the hub or the path to the model tokenizer: Tokenizer to load. Can also be the name on the hub or the path to the tokenizer model_class: optional model class to provide if the model should be loaded with a specific class model_card: optional model card to provide for registering this model
Source code in molfeat/trans/pretrained/hf_transformers.py
176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 |
|
PretrainedHFTransformer
¶
Bases: PretrainedMolTransformer
HuggingFace Transformer for feature extraction.
Note
For convenience and consistency, this featurizer only accepts as inputs smiles and molecules, then perform the internal conversion, based on the notation provided.
Source code in molfeat/trans/pretrained/hf_transformers.py
217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 |
|
__init__(kind='ChemBERTa-77M-MLM', notation='none', pooling='mean', concat_layers=-1, prefer_encoder=True, dtype=np.float32, device='cpu', max_length=128, ignore_padding=True, preload=False, n_jobs=0, random_seed=None, **params)
¶
HuggingFace Transformer for featurizer extraction The default behaviour of this feature extractor is to return the last hidden state of the encoder similar to what is performed by the pipeline 'feature-extraction' in hugging face.
Warning
For bert models, the default pooling layers is a neural network. Therefore, do not use the default Or provide a random seed for reproducibility (in this case pooling will act as random projection to the same manifold)
Note
The pooling module of this featurizer is accessible through the _pooling_obj
attribute.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
kind |
Union[str, HFModel]
|
name of the featurizer as available in the model store |
'ChemBERTa-77M-MLM'
|
notation |
Optional[str]
|
optional line notation to use. Only use if it cannot be found from the model card. |
'none'
|
pooling |
str
|
type of pooling to use. One of ['default', 'mean', 'max', 'sum', 'clf', ]. The value "default" corresponds to the default litterature pooling for each model type.
See |
'mean'
|
concat_layers |
Union[List[int], int]
|
Layer to concat to get the representation. By default the last hidden layer is returned. |
-1
|
prefer_encoder |
bool
|
For an encoder-decoder model, prefer the embeddings provided by the encoder. |
True
|
dtype |
Data type to output |
float32
|
|
device |
Torch device on which to run the featurizer. |
'cpu'
|
|
max_length |
int
|
Maximum length of the input sequence to consider. Please update this for large sequences |
128
|
ignore_padding |
bool
|
Whether to ignore padding in the representation (default: True) to avoid effect of batching |
True
|
preload |
bool
|
Whether to preload the model into memory or not |
False
|
n_jobs |
int
|
number of jobs to use |
0
|
random_seed |
Optional[int]
|
random seed to use for reproducibility whenever a DNN pooler is used (e.g bert/roberta) |
None
|
Source code in molfeat/trans/pretrained/hf_transformers.py
228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 |
|
set_max_length(max_length)
¶
Set the maximum length for this featurizer
Source code in molfeat/trans/pretrained/hf_transformers.py
444 445 446 447 |
|